README.rst 5.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194
  1. Welcome to the repository for Hue
  2. =================================
  3. .. note::
  4. This is the development-oriented readme. If you want to write notes for
  5. end users, please put them in ``dist/README``.
  6. Hue is both a web UI for Hadoop and a framework to create interactive web
  7. applications. It features a FileBrowser for accessing HDFS, JobSub and
  8. JobBrowser applications for submitting and viewing MapReduce jobs, a Beeswax
  9. application for interacting with Hive. On top of that, the web frontend
  10. is mostly built from declarative widgets that require no JavaScript and are
  11. easy to learn.
  12. File Layout
  13. ===========
  14. The "core" stuff is in ``desktop/core/``, whereas installable apps live in
  15. ``apps/``. Please place third-party dependencies in the app's ext-py/
  16. directory.
  17. The typical directory structure for inside an application includes:
  18. src/
  19. for Python code
  20. conf/
  21. for configuration (``.ini``) files to be installed
  22. static/
  23. for static HTML and js resources
  24. templates/
  25. for data to be put through a template engine
  26. docs/
  27. for helpful notes
  28. The python code is structured simply as
  29. ``module/package.py``,
  30. where module may be "filebrowser" or "jobsub". Because it is unlikely that
  31. there are going to be huge conflicts, we're going without a deep nested
  32. hierarchy.
  33. URL Layout
  34. ==========
  35. ``core/src/desktop/urls.py`` contains the current layout for top-level URLs.
  36. For the URLs within your application, you should make your own ``urls.py``
  37. which will be automatically rooted at ``/yourappname/`` in the global
  38. namespace. See ``apps/hello/src/hello/urls.py`` for an example.
  39. Development Prerequisites
  40. ===========================
  41. You'll need these library development packages and tools installed on
  42. your system:
  43. Ubuntu:
  44. * ant
  45. * asciidoc
  46. * gcc
  47. * g++
  48. * libkrb5-dev
  49. * libmysqlclient-dev
  50. * libsasl2-dev
  51. * libsasl2-modules-gssapi-mit
  52. * libsqlite3-dev
  53. * libtidy (for unit tests only)
  54. * libxml2-dev
  55. * libxslt-dev
  56. * mvn (from ``maven2`` package or tarball)
  57. * openldap-dev / libldap2-dev
  58. * python-dev
  59. * python-simplejson
  60. CentOS:
  61. * ant
  62. * asciidoc
  63. * cyrus-sasl-devel
  64. * cyrus-sasl-gssapi
  65. * gcc
  66. * gcc-c++
  67. * krb5-devel
  68. * libtidy (for unit tests only)
  69. * libxml2-devel
  70. * libxslt-devel
  71. * mvn (from ``maven2`` package or tarball)
  72. * mysql
  73. * mysql-devel
  74. * openldap-devel
  75. * python-devel
  76. * python-simplejson
  77. * sqlite-devel
  78. MacOS (mac port):
  79. * liblxml
  80. * libxml2
  81. * libxslt
  82. * mysql5-devel
  83. * simplejson (easy_install)
  84. * sqlite3
  85. Getting Started
  86. ===============
  87. To build and get the core server running::
  88. $ export HADOOP_HOME=<path-to-hadoop-home>
  89. $ git clone http://github.com/cloudera/hue.git
  90. $ cd hue
  91. $ make apps
  92. $ build/env/bin/hue runserver_plus
  93. To start the helper daemons::
  94. $ build/env/bin/hue beeswax_server
  95. $ build/env/bin/hue jobsubd
  96. Now Hue should be running on http://localhost:8000.
  97. FAQ
  98. ===
  99. 1: What does "Exception: no app!" mean?
  100. Your template has an error in it. Check for messages from the server that
  101. look like::
  102. INFO:root:Processing exception: Unclosed tag 'if'. Looking for one of: else, endif
  103. 2: What do I do if I get "There was an error launching ..."?
  104. Turn on debugging by issuing ``dbug.cookie()`` in a Firebug console.
  105. Django Conventions
  106. ==================
  107. If you need to name your urls
  108. (http://docs.djangoproject.com/en/dev/topics/http/urls/#naming-url-patterns)
  109. because there's ambiguity in the view, be sure to prefix the name
  110. with the application name. The url name namespace is global. So
  111. ``jobsub.list`` is fine, but ``list`` is not.
  112. Hue is using Django 1.2, which supports the notion of URL namespaces:
  113. http://docs.djangoproject.com/en/dev/topics/http/urls/#url-namespaces.
  114. We have yet to move over our URLs to this construct. Brownie points for the
  115. developer who takes this on.
  116. Using and Installing Thrift
  117. ===========================
  118. Right now, we check in the generated thrift code.
  119. To generate the code, you'll need the thrift binary version 0.7.0.
  120. Please download from http://thrift.apache.org/.
  121. When preparing ``.thrift`` files, you can use she-bangs to generate
  122. the python bindings like so::
  123. #!/usr/bin/env thrift -r --gen py:new_style -o ../../../
  124. Profiling Hue Apps
  125. ==================
  126. Hue has a profiling system built in, which can be used to analyze server-side
  127. performance of applications. To enable profiling::
  128. $ build/env/bin/hue runprofileserver
  129. Then, access the page that you want to profile. This will create files like
  130. /tmp/useradmin.users.000072ms.2011-02-21T13:03:39.745851.prof. The format for
  131. the file names is /tmp/<app_module>.<page_url>.<time_taken>.<timestamp>.prof.
  132. Hue uses the hotshot profiling library for instrumentation. The documentation
  133. for this library is located at: http://docs.python.org/library/hotshot.html.
  134. You can use kcachegrind to view the profiled data graphically::
  135. $ hotshot2calltree /tmp/xyz.prof > /tmp/xyz.trace
  136. $ kcachegrind /tmp/xyz.trace
  137. More generally, you can programmatically inspect a trace::
  138. #!/usr/bin/python
  139. import hotshot.stats
  140. import sys
  141. stats = hotshot.stats.load(sys.argv[1])
  142. stats.sort_stats('cumulative', 'calls')
  143. stats.print_stats(100)
  144. This script takes in a .prof file, and orders function calls by the cumulative
  145. time spent in that function, followed by the number of times the function was
  146. called, and then prints out the top 100 time-wasters. For information on the
  147. other stats available, take a look at this website:
  148. http://docs.python.org/library/profile.html#pstats.Stats